Decidability of String Graphs

Marcus Schaefer Daniel Štefankovič

string graph = intersection graph of a set of curves in the plane

Examples:

K_n is a string graph for any n Any planar graph is a string graph

Examples:

K_n is a string graph for any n Any planar graph is a string graph

Given a graph G, decide if it is a string graph?

Given a graph G, decide if it is a string graph?

History of the Question: S.Benzer: On the topology of the genetic fine structure '1959

F.W.Sinden: Topology of thin RC circuits '1966

conductors of with some capacitance between them do intersect, other conductors do not intersect

Related older problem:

Diagrammatic reasoning

Is it possible that some A is B, some B is C, but no A is C?

Is it possible that some A is B, some B is C, but no A is C?

...has old history

- **J. Vives**
- J. Sturm
- G. Leibniz
- J. Lambert
- L. Euler

Can any true statement of type*

"Is it possible that some A is B, some B is C, but no A is C?"

be represented using diagrams?

(in the plane, each class being represented by a region homeomorphic to a disc)

*) i.e. for any two concepts we specify whether they **MUSt/Can/Can not intersect**.

Can any true statement of type

"Is it possible that some A is B, some B is C, but no A is C?"

be represented using diagrams?

NO

Can we for any true statement of type

"Is it possible that some A is B, some B is C, but no A is C?"

decide whether it can be represented by diagrams?

Can we for any true statement of type

"Is it possible that some A is B, some B is C, but no A is C?"

decide whether it can be represented by diagrams?

Some known results:

Ehrlich, Even, Tarjan '76: computing the chromatic number of a string graph is NP-complete

Kratochvil '91: recognizing string graphs is NP-hard

induced minor closed, infinitely many non-isomorphic forbidden induced minors An interesting question:

Kratochvil, Matoušek '91: Can we give an upper bound on the number of intersections of the smallest realization?

Weak realizability:

given a graph G and a set of pairs of edges R – is there a drawing of G in which only edges in R may intersect?

e.g. for R=0 ------ planarity

string graph→ weak realizability

any edge from • and • from • and •

KM '91

Kratochvil, Matoušek'91:

Can we give an upper bound on the number of intersections of the smallest weak realization?

SURPRISE!

[KM'91]

There are graphs whose smallest weak representation has exponentially many intersections!

Conjecture[KM'91]: at most exponentially many intersections

Theorem: A graph with m edges has weak realization with at most m2^m intersections.

Deciding string graphs is in NEXP.

Given a graph G and pairs of edges which are allowed to intersect (some set R).

(e.g. K₅ with 2 edges allowed to intersect)

If (G,R) can be realized in the plane, can we give an upper bound on the number of intersections in the smallest realization? Idea: if there are too many intersections on an edge we will be able to redraw the realization to reduce the number of intersections.

color the edges

suppose there are >2^mintersections on e

(nontrivial = with >0 intersections) Then there is a non-trivial segment of e where each color occurs even number of times (possibly 0).

suppose there are >2^mintersections on e

Tvector of parities of the colors to the left

(2^mpigeonholes)

Then there is a non-trivial segment of e where each color occurs even number of times (possibly 0).

axis (a mirror)

number the intersections with circle:

2-3,6-7,...,4k-2 - 4k-1- connected outside

4-5,...,4k – 4k+1- also connected outside

look at the connections 2-3,6-7,...:

(for all colors, respecting allowed intersections) **2-3,6-7,...,4k-2-4k-1- connected outside**

clear the inside and bring them inside

(for all colors, respecting allowed intersections) **2-3,6-7,...,4k-2-4k-1- connected outside**

clear the inside and bring them inside

(4-5,...,4k - 4k+1- connected outside)

use mirror – now everything is connected. What about e?

use upper or lower half of the circle as e

Decreased the # of intersections!

(thus in a realization with minimal number of intersections <m2^m of them)

consequences to topological inference:

can decide realizability for more complex formulas:

